1. $\log _{3} x, \log _{6} x, \log _{2} x$, and $\log _{5} x$ are all examples of $\qquad$ logarithms.
2. A COMMON logarithm has a base of $\qquad$ .

Therefore it can be written as $\qquad$ , but is usually abbreviated as $\square$
3. A NATURAL logarithm has a base of $\qquad$ .

Therefore it can be written as $\qquad$ or $\qquad$ but is usually abbreviated as $\square$
4. a) The number $\mathrm{e} \approx$ $\qquad$
b) $\log 10=$ $\qquad$ c) $\ln \mathrm{e}=$ $\qquad$ d) $\log 1=$
e) $\log 0=$ $\qquad$ f) $\log -10=$ $\qquad$

Solve for x using properties of logarithms. Show all steps by applying one property at a time. NO CALCULATOR!
5. $\frac{1}{2} \log x+\log 3=\log 27$
6. $\frac{1}{2} \ln \mathrm{x}+\ln 3=\ln 27$
7. $2 \log _{2} \mathrm{x}+\log _{2} 9=4$
$\rightarrow$ Careful!! "Merge" logs together on the left side of the equation then solve by rewriting in exponential form.
8. $2 \log 5-\log x=2$
9. $\ln x-3 \ln 4=5$
10. $2 \ln \mathrm{x}+\frac{1}{2} \ln 25=\ln \mathrm{x}$
11. $\ln \sqrt{\mathrm{x}+2}+\ln 5=0$
$\begin{array}{ccc}\ln x & 81 & 81 \\ 0 & 1 & 1 \\ \text { general }\end{array}$
$\begin{array}{ccc}\ln x & 81 & 81 \\ 0 & 1 & 1 \\ \text { general }\end{array}$
$\begin{array}{ccc}\ln x & 81 & 81 \\ 0 & 1 & 1 \\ \text { general }\end{array}$
undefined
undefined
CHECK ANSWERS:
$-\frac{49}{25} \quad-\frac{3}{2} \quad-\frac{1}{4}$
$\begin{array}{lll}\frac{1}{5} & \frac{1}{4} & \frac{1}{3}\end{array}$
$\begin{array}{lll}\frac{4}{3} & \frac{7}{2} & \frac{15}{4}\end{array}$
$2.718 \quad 10$
e $864 e^{5}$
$\log _{10} x \quad \log x$
$\log _{e} x \quad \ln _{e} x$
12. $2 \log _{3} \mathrm{x}+\frac{1}{2} \log _{3} 81=0$
13. Solve for x by forming "like bases" on both sides of the equation to solve for x . NO CALCULATOR!
a. $81^{x}=\frac{1}{729}$
b. $4^{\frac{2}{3} x}=32$
c. $27=81^{x+1}$
14. Evaluate by rewriting in exponential form and using like bases. NO CALCULATOR!
a. $\log _{4} 128$
b. $\log _{\sqrt{3}} 81$

Use properties of logarithms to evaluate each expression. Clearly show all steps by applying one property at a time. NO CALCULATOR.
15. Given that $\log 16=1.204$, find $\log 400$.
16. Given that $\log 8=0.903$, find $\log 200,000$

\#21-22 $\rightarrow$ Same directions as above, although it is ok to use a calculator only on the very last step when you are computing fractions and decimals together.
21. $\log 0.0048$
22. $\log 0.06$
23. Solve for $x$. Clearly show all steps and use the proper order of operations when applying properties of logarithms. NO CALCULATOR.
$\ln \left(\frac{4 e^{5 x}}{25}\right)=7 x$

